
36

2.5 Strings

Computers were originally designed to ”compute” numeric values, but at a very
early stage scientists realized that they were just as useful for manipulating
textual information. The basic data type for working with text is called a
string. Python has a particularly strong set of operations for working with
strings. Here we will introduce the basic techniques for strings, which will allow
us to use text as well as numbers in our programs. In a later we will give a more
thorough coverage of strings and their capabilities.

There are three ways you can get strings into a program: they can be literal
strings in the program code, you can input them from the user or a file, or you
can compute them from simpler strings, even from individual letters. String
literals are sequences of characters inside quotation marks. You can use either
single quotes or double quotes, as long as you end the string with the same kind
of quote that you used to start it. For example ”Four score and seven years ago”
and ’Barack Obama’ are two examples of string literals. Note that ”example”
and ’example’ are exactly the same string. The string ””, which contains no
characters at all (in other words, this string has length 0) is called the empty
string. Empty strings serve a role similar to 0. We often will build up strings by
starting with the empty string and adding letters. Note that in Python there is
no separate type for individual characters, such as the letter ’a’. Characters in
Python are just strings of length 1.

You can work with strings just as you work with numbers. Variables can be
assigned string values, as in

name = ”Hieronymous Bosch”

Strings can be given values through user input, as in

name = input (” Ente r a name : ”)

The input() function doesn’t try to evaluate what the user types, it just returns
it as a string. Finally, you can build up a string value within a program, as in

name = ”Marvin ” + ” K r i s l o v ”

There are many operators and functions for working with strings. One of the
most common is the length function len(s), which returns the number of letters
in string s. The + operator when used with strings gives the concatenation. or
pushing together, of the operands. For example, ”multi” + ”media” is the new
string ”multimedia”. Note that you can add two numbers with + and you can
concatenate two strings with +, but it doesn’t make sense to use + between a
string and a number.

Sometimes we want to grab the individual letters that make up a string. The
expression s [n] returns the letter in the nth position of string s. For technical
reasons Python, and most other computer languages, start indexing strings at
position 0. Thus, if test is the string ”abcde”, then test [0] is the letter ”a”,
test [1] is ”b”, and so forth. String x is indexed from position 0 to position
len(x)−1.

2.5. STRINGS 37

A slice of string s is a substring made up of contiguous letters in s. s [i : j] is
the slice of string s consisting of letters from position i to position j (including
i and not including j). Again, we start indexing positions with 0. For example,
if word is the string ”together”, then word[2:5] is the string ”get”.

The following table summarizes the most commonly used string operations.
In this table x, s, and t are strings, n, i , j , and k are integers.

38

Symbol Meaning Example Result
str(n) Returns the string version of n. str(23) ”23”
len(s) Length of string s. len(”Katrina”) 7
s+t Concatenation of strings s and t. ”multi” + ”media” ”multimedia”

s*n or n*s String s is repeated n times. ”bob”*3 ”bobbobbob”

s[n]
The nth letter of string s. Index-
ing starts at 0.

x =”abcde”

x[3] ”d”

s[i:j]

The slice of string s, consisting of
the letters starting at position j
(indexing starts with 0) and ex-
tending up to but not including
position j.

type = ”deciduous”

type[4:7] ”duo”

s[i:]
This is the slice of string s start-
ing at position i and going to the
end of s.

type = ”deciduous”

type[4:] ”duous”

s[:j]

This is the slice of string s start-
ing at the beginning of s and ex-
tending up to but not including
position j.

type = ”deciduous”

type[:4] ”deci”

x in s
True if x is found in s and False
otherwise. x can be either a single
letter or a possible substring of s.

’o’ in ”bob” True

’d’ in ”bob” False

x not in s
False if x is found in s and True
otherwise. x can be either a single
letter or a possible substring of s.

”o” not in ”bob” False

’d’ not in ”bob” True

s.find(x)

If string s contains string x, this is
the index of x’s starting position
in s. If s does not contain x, this
is -1.

s = ”abcde”

s.find(”cd”) 2
s.find(”x”) -1

s.lower()
Returns a string with the same
characters as s, but all in lower-
case.

s = ”wHimseY”

s.lower() ”whimsey”

s.upper()
Returns a string with the same
characters as s, but all in upper-
case.

s = ”wHimseY”

s.upper() ”WHIMSEY”

s.islower()

Returns True if s has at least one
alphabetic letter and all of the
alphabetic letters in s are lower-
case.

s = ”bob”

s.islower() True

s.isupper()

Returns True if s has at least one
alphabetic letter and all of the al-
phabetic letters in s are upper-
case.

s = ”OH!”

s.isupper() True

2.5. STRINGS 39

Strings in Python can’t be changed once they are created. For this reason
strings are called immutable. This doesn’t mean that a string variable can’t be
changed; it is only the string itself that cannot be altered. In this regard Python
strings are no different from numbers: you cannot change the number 23 to be
a different number. Some other languages have mutable strings. For example,
in Java if s is the string ”picket” and we execute a statement s [1] = ’o’, this
changes string s to ”pocket”. We can get the same effect in Python from the
code:

s = ” p i c k e t ”
s = s [: 1] + ’ o ’ + s [2 :]

Note that rather than change a string, in Python we usually reconstruct it
and assign the new string to the old string variable.

The string comparison operators use the same symbols as arithmetic com-
parisons. Strings are ordered by the usual dictionary (alphabetical) ordering,
where a standard table of characters, called the ASCII table, is used to deter-
mine the ordering of individual characters. See the optional section on string
encodings, below, for more details about this table. Here is a table of the com-
parison operators:

Symbol Meaning Example Result
< Less than ”bike” < ”car” True
> Greater than ”bike” > ”car” False
<= Less than or equal to ”bike” <= ”car” True

”car” <= ”car” True
>= Greater than or equal to ”bike” >= ”car” False

”car” >= ”car” True
== Equal to ”bike” == ”car” False

(comparison, not assignment) ”car” == ”car” True
! = Not equal to ”bike”! = ”car” True

”car”! = ”car” False

String formatting

It is often the case that you want to print a line that is composed of text plus
values that are contained in one or more variables. For example, an averaging
program might have a variable average that contains the average, and a variable
count that holds information about the number of item that went into this
average. We might want to print all of this information on one line, such as:

7 items were found, with average 16.2.

To do this with string concatenation we would need to convert the numeric
variables into strings:

print (str (count)+” i t ems were found , w i th ave rage ”+str (ave rage)+” . ”)

This works, but it is hard to read and easy to get wrong. String formatting is
a technique Python provides to simplify expressions like this. It is particularly

40

useful for print statements, but it can be used anywhere you need to make a
string out of values contained in variables.

A formatted string consists of two parts separated by a percent sign:

pa t t e r n % (v a l u e s)

The pattern can have percent-fields that act as placeholders. There are three
such fields:

%d is a placeholder for an integer value.
%f is a placeholder for a floating point value.
%s is a placeholder for a string.

For each percent-field in the pattern, you need to give a corresponding value.
The values are a list, separated by commas, inside parentheses, such as (count, average)
If you have only one value you may omit the parentheses.

The averaging example above would be expressed as follows with formatted
strings:

print (”%d i t ems were found , w i th ave rage %f . ”%(count , ave r age))

This is easier to read, and easier to write correctly.

Formatted strings have another advantage. You are allowed to supply a field-
width for each percent-field. This is very useful if you are trying to print data
in a table so that it comes out in columns. If, for example, you have numbers
that might need anywhere from 1 to 4 digits, printing them with a fieldwidth
of 4 or more will guarantee that they always occupy the same amount of space
in the output line.

For strings and integers the fieldwidth is a number that comes between the
%-symbols and the s or d symbol. If the fieldwidth is positive, smaller values
are right-justified; if it is negative they are left-justified. For example ”%5d”
means to print the integer value using at least 5 spaces, and to put the value at
the right edge of this field. ”%-5d” means to make the fieldwidth 5, and to put
the value at the left edge of this field. With floats the fieldwidth is a bit more
complex. ”%w.df” means to use a total fieldwidth of w, including d places after
the decimal point. For all of these fieldwidths, an omitted fieldwidth defaults
to 1.

Altogether, our averaging example would be formatted:

print (”%d i t ems were found , w i th ave rage %.2 f . ”%(count , ave r age))

This means to print count using no more spaces than necessary, but to use 2
decimal places for average.

Here is another example, this time a complete program. We want to read in
a person’s name and age, and then print them out on one line. Program 2.5.1
does this. Note that we use eval() after the numeric input. Note also the use of
formatted strings in the print statement. name is a string and age is an integer,
so we use formats %s and %d formats for them.

2.5. STRINGS 41

This r e ad s a pe r son ’ s name and age ,
then p r i n t s them on one l i n e

def main () :
name = input (” Ente r a name : ”)
age = eval (input (” Ente r t h i s pe r son ’ s age : ”))
print (”%s i s %d y e a r s o l d . ” % (name , age))

main ()

Program 2.5.1: Names and Ages

Strings and encodings (optional)

Internally, all data inside a computer is represented by sequences of 0’s and 1’s.
A given sequence of bits could represent either a number or a string, depending
on how it is interpreted. Python lets us move easily between these two inter-
pretations. You don’t usually need to do this the mechanisms the language
provides for manipulating text usually make it unnecessary to do this. In case
you are curious, here are some details about how strings are encoded.

There are two built-in functions for working with the numeric encodings of
strings:

ord(c) gives the numeric value of c, which must be a single character:
a string of length 1.

chr(n) gives the character corresponding to integer n.

For example, ord(’A’) is 65 and ord(’a’) is 97. Python uses a standard char-
acter encoding called the ASCII character set. ”ASCII” stands for ”American
Standard Code for Information Interchange”. The ASCII encoding goes back
to the early 1960’s and has been the standard representation for text for many
years. The first 31 characters in this set are non-printing ”control” characters
for controlling line printers and other output devices. In the table below we list
all of the printing ASCII characters.

42

The ASCII Character Set

x chr(x) x chr(x) x chr(x) x chr(x) x chr(x)
32 space 51 3 70 F 89 Y 108 l
33 ! 52 4 71 G 90 Z 109 m
34 ” 53 5 72 H 91 [110 n
35 # 54 6 73 I 92 \ 111 o
36 $ 55 7 74 J 93] 112 p
37 % 56 8 75 K 94 ^ 113 q
38 & 57 9 76 L 95 _ 114 r
39 ’ 58 : 77 M 96 ‘ 115 s
40 (59 ; 78 N 97 a 116 t
41) 60 ¡ 79 O 98 b 117 u
42 * 61 = 80 P 99 c 118 v
43 + 62 ¿ 81 Q 100 d 119 w
44 , 63 ? 82 R 101 e 120 x
45 - 64 @ 83 S 102 f 121 y
46 . 65 A 84 T 103 g 122 z
47 / 66 B 85 U 104 h 123 {
48 0 67 C 86 V 105 i 124 |

49 1 68 D 87 W 106 j 125 }
50 2 69 E 88 X 107 k 126 ~

You can see that this character set has some convenient characteristics: the
lower-case letters are all contiguous and the upper-case letters are too, though
the upper-case letters and the lower-case ones do not appear together. In fact,
all of the upper-case letters come before all of the lower-case ones. This ordering
is used when we alphabetize words in Python: unless we do extra work to avoid
this, anything that starts with an upper-case letter will appear before anything
that starts with a lower-case one.

Python uses ASCII encodings for strings when it is possible, because each
of the ASCII characters can be encoded in one byte (8 bits) of data. However,
Python also implements an extension of ASCII called /em Unicode that uses
two bytes per character. This allows for about 65,000 different characters. For
example, chr(9924) is a cute picture of a snowman while chr(9824) is the ”spade”
character from a deck of playing cards. If you run the code

for i in range (0 , 20000) :
print (”%d : %s ” %(i , chr (i)))

you can see many of the options for this extended character set.

